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Unsteady, viscous, circular flow 
I. The line impulse of angular momentum 

By MERWIN SIBULKIN 
Convair Scientific Research Laboratory, San Diego 

(Received 27 December 1960) 

In  this paper a study of the energy-transfer processes associated with the 
motion of a viscous, heat-conducting fluid is begun. The class of motions con- 
sidered are unsteady, two-dimensional, vortical flows. After developing simpli- 
fied equations of motion and energy appropriate to this type of flow in the low 
Mach-number limit, general solutions of the momentum equations are presented. 

The concept of a line impulse of angular momentum is introduced as an example 
of this class of motions for which a solution of the energy field is obtainable in 
closed form. The solution for the line impulse can be viewed as a combination of 
velocity, pressure, and temperature waves concurrently radiating from the 
origin of the impulse and decaying with time. Particular examples of the develop- 
ment of the energy field of the impulse in both liquids and gases are presented 
for selected values of Prandtl number. The energy-transfer processes are dis- 
cussed in some detail, and the resulting differences in the energy fields for liquid 
gases are emphasized. 

1. Introduction 
For a large class of problems in hydrodynamics and low-speed aerodynamics, 

it is not necessary to study the energy equation to obtain the desired solution 
of the flow problem. In  inviscid, compressible flow the energy equation per se is 
eliminated by the use of the isentropic relationship p / p ~  = const. And, for cer- 
tain viscous, compressible flow problems the energy equation is satisfied for 
particular values of the Prandtl number g by a constant value of the stagnation 
temperature throughout the flow field, e.g. the flow over an insulated plate with 
CT = 1 and the flow through a shock wave with CT = $. Consequently, there have 
been relatively few problems in fluid dynamics in which solutions of the energy 
equation have been obtained compared to those in which the momentum equation 
has been solved. 

In  this investigation, interest will be focused upon the transfer of energy be- 
tween fluid elements due to viscous work and to heat conduction within (but 
not across) the boundaries of the fluid. The particular class of problems studied 
are unsteady, two-dimensional flows with circular streamlines. This work was 
oiiginally motivated by a desire to understand the temperature separation 
phenomenon exhibited by the Ranque-Hilsch vortex tube. 

The investigation is divided into three parts. 
19-2 
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In  part I the energy field in an infinite fluid associated with the decay of what 
will be defined as a line impulse of angular momentum is considered. The flows 
of both a liquid and of a gas in the limit of Mach number equal to zero are studied, 
and solutions, in closed form, are obtained and compared. 

The investigation will proceed as follows. First, simplified forms of the 
Navier-Stokes and energy equations for plane, axisymmetric flow are developed 
for the case where the Mach number in the flow field is everywhere much less 
than one. Then the general solutions for the decay of the velocity field associated 
with an arbitrary initial velocity distribution are given for finite and for infinite 
flow fields. 

The particular initial velocity distribution for a line impulse of angular momen- 
tum is then introduced. The line impulse of angular momentum may be associated 
with the following physical model. If a cylindrical rod whose radius is very small 
compared to its length is immersed in a viscous fluid and impulsively set in 
rotation about its axis, the adjacent fluid will also be set in motion. The line 
impulse of angular momentum corresponds to the limit obtained as the radius 
of the rod approaches zero and the angular velocity of the rod approaches infinity 
in such a way that the angular momentum imparted to the fluid remains finite. 

The solution obtained for the velocity field associated with the decay of the 
line impulse is then used to  determine the energy dissipation due to viscosity. 
Finally, the energy fields resulting from the combined action of dissipation and 
heat conduction are found for both incompressible and compressible fluids. 

In part I1 the corresponding flows in a circular cylinder of finite radius will be 
considered, and the energy transfer processes will be discussed in some detail. 
In  these cases it will be necessary to resort to numerical integration to obtain the 
desired solutions of the energy equation. 

In  part I11 a new model for the flow in a vortex tube will be proposed. Using 
the methods developed in part 11, velocity and energy profiles will be calculated 
and compared with previously published measurements. Some new experi- 
mental work based upon the proposed flow model will also be presented. 

2. Notation 
Because of the large number of symbols required, it has been convenient in a 

few instances to assign more than one meaning to a symbol where, it is hoped, no 
confusion should result. 

The term total denotes the addition of the kinetic energy per unit mass to the 
specified quantity; the term over-all denotes an integrated value (e.g. of kinetic 
energy) for a disk of fluid of unit depth. An overbar indicates a mean value, and 
an asterisk indicates a non-dimensional quantity. Finally, a subscript 00 denotes 
the value taken as r --f co. 

3. Preliminary analysis of the conservation equations 
In  the present work we shall consider two idealized fluids: (i) the perfect ga.s 

having the equation of state p = pgT and constant values of specific heat cP 
and c,, and (ii) the perfect liquid having the equation of state p = const. and a 
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single, constant specific heat c. Hereafter, when the terms gas or tiquid are used 
they will be understood to refer to the perfect fluids defined above. 

In  cylindical polar co-ordinates ( r ,  8, x )  the continuity, momentum, and energy 
equations for two-dimensional (a/%. = 0), axisymmetric ( a / %  = 0) flow are 
(see, for example, Pai 1956, pp. 28-44, and Howarth 1953, pp. 38-54): 

ap i a  
at r ar 
- + - - ( r p u )  = 0, ( 3 . l a )  

(3: lb)  

( 3 . 1 ~ )  

(3 . ld)  

where t is the time, p is the fluid density, u the radial velocity, u the circumferen- 
tial velocity, p the pressure, and T the temperature in the fluid, and where 

,IA being the first, h the second, coefficient of viscosity, and k being the thermal 
conductivity. 

We now consider the relative magnitudes of u and u. For a source-free liquid, 
the continuity equation ( 3 . 1 ~ )  immediately gives u = 0. To study the situation 
for a gas we choose a characteristic radius R and velocity V and define the non- 
dimensional variables s = r / R  and T = t V / R .  In  the limit M -+ 0 where M is 
the Mach number (in the sense V+ 0 for finite T ) ,  the changes in fluid properties 
will be small perturbations about the mean values p ,  j T ,  p, F, and &. The continuity 
equation ( 3 . 1 ~ )  can be formally integrated in the form 

Defining the non-dimensional variables 

where h is the enthalpy per unit mass, and y the ratio of the specific heats, 
the gas law can be written in the non-dimensional form 

P* = {YAY - l))P* - h** (3.4) 

Differentiating (3.4) and substituting the result in (3.2) gives 
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Since we consider only those changes in enthalpy due to viscous work (by 
restricting the analysis to flows with no heat transfer across the boundaries of 
the fluid), h* remains finite as A -+ 0 (as, of course, does p*), and therefore 

U 
lim - = 0. 

&-to v (3.6) 

For estimation purposes (again considering the limit A+ 0 ) ,  one may take 

- h-K v2 pu-p = - A - = 
F 7i  2K 

p / p  = h/E or 
- -&4. 

Then 

and similarly for the heat conduction term in the energy equation. 

duces the momentum and energy equations to 
Applying (3.6) and (3.7) to (3.1) eliminates the continuity equation and re- 

p g  = $&[+r;-:)], 
-ae - av v L a  alp 

at at (ar r ) 2  r ar (  a r ) ,  

(liquid) p- at = p  (ar r )2  +-- T a r (  r- a,) , 

-ah ap - av v ~a aT 
(gas) p - = - + p  --- +-- r- 

( 3 . 8 ~ )  

(3.8b) 

( 3 . 8 ~ )  

(3 .8d )  

where e is the internal energy per unit mass. 
Comparing (3.8) to the more familiar steady, boundary-layer equations we 

note that the momentum equations for a liquid and for a gas become identical 
and are uncoupled from the energy equation as in the boundary-layer case. 
However, the energy equations for a liquid and for a gas differ in the unsteady 
terms. 

The unsteady pressure term in ( 3 . 8 d )  can be eliminated by the use of the radial 
momentum equation ( 3 . 8 ~ ) .  After integrating ( 3 . 8 ~ )  with respect to r and dif- 
ferentiating with respect to t ,  the resulting expression in non-dimensional vari- 
ables is 

aP* - - aP*(U) I 2 / s  (Pa(;;)2+Ag) _ _ _  7, a7 aT a / R  P 
where a is an arbitrary fixed point in the fluid. Thus 

and, it may be noted, v*(s, T) may be found from the circumferential momentum 
equation (3.8b) above. 

The remainder of the analysis is restricted to the limit M --f 0; the bars over 
the fluid properties are no longer needed and will be omitted. 
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A further mathematical simplification of equations (3.8) can be achieved by 
employing the angular velocity w ( = v/r) as a dependent variable. In terms of w 
we obtain 

prw2 = aplar, (3.10 a)  

(3.10b) 

(3.10 c )  

where v is the kinematic viscosity and ( 3 . 8 ~ )  and ( 3 . 8 d )  have been combined into 
(3.10c),  for the sake of economy, by using the 'Kronecker 8' defined below: 

S,, = 0, for fluid = liquid, cpdT = c d T  = de, 
and for fluid = gas, 8,, = 1 ,  c,dT= dh. 

Finally, since we are interested in the total-energy field, we combine the momen- 
tum equation (multiplied by w )  with the energy equation to obtain the 'total- 
energy equation ' 

where, anticipating the application of (3.11) to an infinite flow field we have 
defined a general-purpose total energy (or enthalpy) variable B by - a C , T + & V ~ - C ~ T ~ ;  
thus ( 3 . 1 1 ~ )  

Here E is the ' total internal energy ' and H the total enthalpy, each being obtained 
by adding the kinetic energy to the previously defined quantities. The circum- 
ferential momentum and total-energy equations in the form (3.10 b )  and (3.1 1 )  
form the basis of the subsequent analysis. 

E = E - em (for a liquid), S = H - h, (for a gas). 

4. Solution of the momentum equation 
4.1. General solutions 

The boundary conditions for the circumferential momentum equation (3.10 b )  
are determined by the requirements that v = 0 at r = 0 and, for an infinite fluid, 
v = 0 at  r = 00. When the fluid is bounded by a fixed cylinder of finite radius 
R,t v = 0 at  r = R. In terms of w(r,  t ) ,  we have the relations 

(awlar) (0, t )  = 0, ( 4 . 1 ~ )  

w(R,t)  = 0 or w ( a , t )  = 0. (4.1 b )  

The separation of variables technique and (4.1 a)  give as a solution of (3.10 b )  

w(r ,  t )  = (A/r )  e-"tJ1(arz/v)s, (4.2) 

where J1 is the Bessel function of the first kind and A and a are constants to be 
determined. 

t It should be clear that this use of the symbol R is not inconsistent with the use of R 
aa 8 chwacteristic radius in $3. 
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For the cylinder of finite radius, boundary condition (4.1 b) gives ai = h?v/R2 
where the hi are the zeros of J1. Then, expanding an arbitrary initial condition 
W(Y, 0) in a Fourier-Bessel series in J1 and combining the result with (4.2) gives 
the general solution (McLeod 1922) 

where s = r/R. 

transform to (4.2) yields 
For the infinite fluid, setting k e (a/v)* and applying the Fourier-Bessel 

which may beintegratedover k (using 4.14 (39) ofErdelyi, Magnus, Oberhettinger 
& Tricomi 1954), to give the general solution 

r 2  + r’2 
w(r,t) = (4.5) 

where Il is the modified Bessel function of the first kind. 

4.2. VelocityJield of the line impulse of angular momentum 

We define the cylindrical impulse of angular momentum f i ( r ‘ )  as the &-function 
of w which is everywhere zero except at r = r’, where it tends to infinity in such 
a way that 

2rIom w ( r )  r3 dr = Q(r’). (4.6) 

For r’ = 0, equation (4.6) defines the line impulse of angular momentum which 
will be designated simply by Q. 

Combining (4.6) with (4.5), the time-dependent velocity field of a cylindrical 
impulse occurring at t = 0 is given by 

Since 

r f i ( r ‘ )  r2 + r’2 I l ( r r ’ /2vt )  
87rv2t2 

w(r, t ; r ’ ) =  - ( - x) rr’/= ‘ 

limIl(x)/x = +, 
x+o 

the corresponding result for a line impulse of angular momentum is 

v(r ,  t )  = rQ exp (- f) . 
1 6,vat2 4vt 

(4.7) 

A plot of (4.8) with w, r ,  and t made non-dimensional in an appropriate manner is 
given in figure 1. -t 

t The equation ZI = (-  Ar/2vt2) exp ( -  r2/4vt)  was first given by Taylor (1918) as a par- 
ticular solution of the momentum equation (3.10b) which could be used to represent 
‘a small eddy’. Taylor then compared the decay time of this eddy with measurements of 
the decay of turbulence behind a grid. In  the present paper, the energy field associated 
with this particular velocity distribution is determined. 
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We now consider some properties of the line impulse.? 
(i) Since there are no solid boundaries, the total angular momentum of the 

fluid (obtained by substituting (4.8) in (4.6)) is independent of time and equal 
to Q. 

(ii) The over-all kinetic energy of the fluid, 

(4.9) 

is a function of time, since integrating (4.9) gives 

4 ( t )  = pQ' /128~~~t ' .  (4.10) 

( V l W  r 

FIGURE 1. Typical profiles showing the decay and spread of the velocity field, w, 
of a line impulse of angular momentum created at t = 0. 

Here ek is the kinetic energy per unit mass. As t -+ 0, Ik + 00, i.e. the kinetic 
energy of the impulse becomes infinite since the momentum remains finite as 
the mass of fluid in motion approaches zero at time equal to zero. This is clearly 
a physically unrealizable situation, and will have an important effect on the 
solution of the energy equation. 

(iii) The viscous work, i.e. the rate of increase of energy per unit volume due 
to the action of shear forces, is (cf. equation ( 3 . 1 0 ~ ) )  

(4.11) 

t It may be permissible to point out that (contrary to the case of line and cylindrical 
heat sources) the cylindrical impulse is not obtained by the superposition of a ring of line 
impulses since in the latter case the velocity changes direction at r = T'. 
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which for the line impulse becomes 

2pR2 r2 
W(r,t) = - ( 1 6 ~ ) ~ v ~ t ~  [ (%) -2(&)] ex' (-&) ' (4.12) 

Since this viscous work can cause only a redistribution of energy between fluid 
elements, we must have 

2nJOw W(r ,  t) rdr = 0, (4.13) 

a relationship satisfied by (4.12). 

5. Solution of the energy equation for the line impulse 
The handling of the unsteady pressure term in the energy equation was dis- 

cussed in $3  (cf. equation (3.9)). For the velocity field of the line impulse (4.8), 
we set a = co and obtain 

Substituting (4.8) and (5.1) in (3.11) gives 

where 
1 r2 
t 4  

Q(r,t; v , q )  3 -exp 

--+ 3--- s,, . (5.2a) 
a ( zr:t) 1 

Equation (5.2) is of the form of an inhomogeneous, unsteady diffusion equa- 
tion for the total energy (enthalpy) & in terms of the known distribution of 
total energy (enthalpy) sources Q. The variable S has been defined (3.11a) such 
that the boundary condition at infinity is E(m, t) = 0. 

For the liquid case, the energy source term is due only to viscous work and, 
consequently, equation (5.2 a) satisfies the conservation of energy relationship 
(cf. equation (4.13)) 

2njomQ[liquid] rdr = 0. (5.3) 

In  addition, in the absence of heat conduction ((r = m), equation ( 5 . 2 ~ )  reduces 
to (4.12), that is to 

{pR2/(16~)2v3}Q[liquid, a = co] = W .  

For the case of a gas, (5.3a) represents a total enthalpy source field and con- 
tains, in addition to the viscous-work terms, a term representing the increase 
in enthalpy due to fluid element contraction.The distribution of Q for liquids and 
gases is shown in figure 2 as a function of the similarity parameter B e r2/2vt, for 
several values of Prandtl number, a. For a particular value of a, the shape of 
Q(0, t) is independent of time, but its magnitude at a specific value of B decreases 
as t4. 
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Setting 
E = [w/(i6n)2 v33 (zl + E ~ ) ~  

a formal solution of (5.2) is given b y  

(5.3a) 

El(r7 t )  = ~ ~ d t ’ j ~ & ( r ’ ,  t’) G(r7 t ;  r’, t ’ )  2nr‘dr‘, (5.3b) 

Ez(r , t )  = j ~ [ n 2 / ( 1 6 n ) z v 3 ] - 1 ~ ( r ~ , q )  G(r,t;  r’, q) Snr‘dr’, (5.3c) 
0 

2 

1 

-1 

-2 

-3 

-4 

OL, 

2 0  

I I I I I I I I I I 
5 6 7 8 9 10 0 I 2 3 4 

-4 u 
8 = ra/2vt 

FIGURE 2. Distribution of source strength Q versus the similarity parameter 0 
for several values of Prandtl number u. (a) Liquid, (b )  gas. 
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where G is the Green’s function for an instantaneous, cylindrical source (Cars- 
law & Jaeger 1959, p. 259) satisfying (5 .2)’  namely 

0- 
G(r, t ;  r ’, t‘) = -- exp 

4nv 
( 5 . 3 4  

In  (5 .3a) ,  El gives the contribution to the energy field of the source distribution 
Q(r ,  t ) ,  and E2 gives the contribution of the initial condition E(r ,  7). The singu- 
larity in Q at t = 0 reflects the previously discussed ($4.2) singularity in the 
kinetic energy at t = 0. Consequently, a parameter 7 (having the dimensions of 
time) has been introduced in (5 .3b) ,  and we will look for limiting forms of the 
solutions of the energy equation for r/t < 1. 

After substituting ( 5 . 2 ~ ~ )  and ( 5 . 3 4  into (5 .3b ) ,  the resulting expression for 
El may be integrated in closed form. The procedure, however, is too lengthy for 
presentation here; the interested reader may follow the details of the integration 
in Sibulkin (1960). Briefly, (5.3 b )  can be integrated with respect to T (using Erde- 
lyi et al. 1954), in terms of a finite hypergeometric series. The remaining integra- 
tion with respect to t can be carried out in terms of elementary functions and the 
exponential integral EI(x). For x + 0, EI(x) is defined (in terms of the Cauchy 
principal value) by? 

EI(x) = P (e-t/t)dt, (5.4a) 

and is related to previously tabulated functions (Jahnke & Emde 1945, p. 6) by 

SI 
t EI(x) = -Ei( -x) for x > 0, 

EI(x) = -z( -x) for x < 0. 

After defining the variables 

(5.4b) 

the solution for the contribution of the source distribution Q to the energy field E 
is 

where (a& and &, are tabulated in the Appendix. 

6.  Energy field in a liquid 
In  $ 3 ,  we defined a (perfect) liquid by p = const. and c = const. We 

also introduced the symbols E and S,, which for a liquid have the meaning 

t This definition of EI(z) and its relation to Ei(z) and %(z) is given in an unpublished 
note by A. Farnell, Convair Scientific Research Laboratory, Sam Diego. 
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f i  = E - em, S,, = 0. As the initial condition for the line impulse in a liquid, we 
set the total energy E equal to a constant throughout the fluid by assuming 

Then B(r,  7) = 0 which, by ( 5 . 3 ~ ) )  makes Zz ( r ,  t )  = 0 and reduces ( 5 . 3 ~ )  to 

- 

E(r,v) = em. (6.1) 

(6.2) B = [ ~ 2 / ( 1 6 ~ ) 2  1'31 E,, 
where the complete solution for B1 is given by (5.6) with the (a,8)i terms (cf. 
Appendix) evaluated for S,, = 0. 

At this point one must consider the significance of the time parameter 7. To 
be precise, (6.2) is the solution for an initial energy distribution (6.1) and an 
initial velocity distribution given by (4.8) with t = 7, i.e. an initial velocity corre- 
sponding to the velocity field of a line impulse of angular momentum at t = 7, As 
a consequence of the singularity in the kinetic energy of the line impulse at  
t = 0 (cf. 3 4), one finds that setting 7 = 0 in (6.2) yields either B = + co or Z = - co 
for all values of r and t. Consequently, we consider, in $6.1, the approximate 
form of (6.2) for q/t < 1; and, in 56.2, we investigate the development of (6.2) 
with r / t  for the special case of a = 1, for which the explicit expression of (6.2) 
is greatly simplified. 

6.1. Solution for r/t < 1 

For 7 / t  < 1, the dominant terms in the solution for Z,, (5.6)) are those in the series 
- 1  i n  
3 (@+I - 1) ee.  For a liquid, aiPi &, -3 = 0, and the approximate solution for 
k =j i=l 

Carrying out the evaluation of (6.3) for y / t  << 1, and using (6.2), yields the energy 

distribution Q2 a( 1 - 2a)  (1 - -a 
(6.4) E(r, t ;  7) - em ~~~ .____- A?? e-qd, 

2 ( 1 6 ~ ) ~ v ~  7t2 
and defining the non-dimensional variables 

E* = Q(E-em)/v3 and t* = v2t/Q (6.6) 

gives the energy distribution in the non-dimensional form 

( 6 . 4 ~ )  

In order to eliminate the dependence of E upon 7, we define iZk (a mean kinetic 
energy per unit mass at t = 7) by 

pL2ek(7) =_ Ik(v), ( Q / V ) * ,  (6.6) 

where L is a characteristic length. Applying (4.10) and (6.5) to (6.6) yields 

(6.7) 

Comparing (6.4a) and (6.7) one notes that, at a given position in space and time, 
the total energy increases as the square root of the initial kinetic energy; thus, 

-* ek - - [128~(7*)~]- l .  
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Equation (6.8) constitutes the solution for the energy field of a line impulse 
of angular momentum in a liquid. It is interesting to note that, although the 
shape of the energy input distribution Q is a function of g (cf. figure 2a), only 
the amplitude of the energy distribution E* is dependent upon cr while its shape 
is similar to that of Q for (r = 1. Since, by (5.3), the over-all rate of energy input 
into the liquid is zero (relative to .the energy level at infinity), the energy distribu- 
tion (6.8) should, and does, satisfy the condition 

2nI; E*(r, t)rdr = 0. 

6.2. Xolution for u = 1 

When cr = 1, the Appendix shows that ai = 0 for i = 6 to 10. (This simplifica- 
tion is related to the corresponding simplification for g = 1 in the basic energy 
equation (3.11).) Evaluating the remaining terms in (5.6) from the Appendix 
for v = 1, and making use of (5.4b), (6.2), (6.5), and (6.7), gives 

To find E* for r = 0 (8 = O ) ,  we use the series expansion (Jahnke BE Emde 1945, 

Ei( - x) = 0.5772 +In x + O(x) PP. 1, 2) 

to obtain 

(6.10 a )  

(As a check on the analysis, one can obtain ( 6 . 1 0 ~ )  directly by setting r = 0 
and cr = 1 in (5.4) and integrating the reduced equation for Zl.) The develop- 
ment of E* as r/t varies from 1 to 0 is shown in figure 3. The result for q/t = 0 
from (6.10) is, of course, identical to (6.8) for cr = 1. 

7. Energy field in a gas 
7.1. Analysis of initial conditions 

In $ 3  we defined a (perfect) gas by p = p/BT and cp = const. We also intro- 
duced the symbols E and S,, which for a gas have the meaning 9 = H-h, ,  
S,, = 1. Once the Z field for a gas-flow problem has been determined, the energy 
field is found from the relationship 

E = (H + Q(7 - 1) g2])fr. (7.1) 

It will be assumed that y > 1. 

E equal to a constant throughout the fluid by assuming 
As the initial condition for the line impulse in a gas, we again set the energy 

E(r,q) = em. (7.2) 
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Combining (4.8)) (7.1), and (7.2) gives the initial enthalpy distribution 

After substituting (7.3) into (5.3c), the resulting equation for E, can be inte- 
grated (Sibulkin 1960) to obtain 

(7.4) 

0 4  

0 

- 04 

& - I - 0 8  
r(r 

** lo, 
v 
N 

K, -1.2 
v m 

k c: 
-1.6 

- 2.0 

- 2.4 

- 28 

\ o i  
0 3  

I I I I I I I I I 
0 2 4  6 8 10 12 14 16 

e = ,+2/zvt 

FIUURE 3. Development of the energy field, E*, in a liquid having a Prandtl number ~7 = 1 
as a function of the parameter r/t .  For fixed time t ,  the portion of the ordinate in brackets 
is constant; the solution for the line impulse is the curve at the limit q / t  = 0. 

which, when combined with (5.6) in (5.3a),  gives the general solution for the total 
enthalpy field, B ( = H - ha), in a gas. The approximate form of the solution for 
r/t < 1 and the solution for a = 1 will be considered in $5 7.2 and 7.3. 

For either a liquid or a gas, (7.2) sets the initial local-energy-perturbation, 
(E-em) ,  equal to zero. In  addition, for a liquid, since p = const., condition 
(7.2) is sufficient to make the initial over-all energy-perturbation, 
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equal to zero; thereafter, conservation of energy requires that IT remain equal 
to zero (cf. (6.9)). The corresponding situation for a gas is more complicated. 

Returning, for a moment, to the non-dimensional variables (3.3) used in the 
preliminary analysis of $3, and defining 

I; = 2nIom (yE**Sp*+ydp*E** ) rd r .  (7.6) 

Consistent with our previous restriction to gas flows in the limit M --f 0, 
(7.6) reduces to 

after defining 
(7.7a) 

Ig(t) E 277 E**(r,t)rdr and I:(t) = 2n p*(r,t)rdr, (7.7b) 

where I: is the over-all mass-perturbation. Applying the first law of thermo- 
dynamics, between time t’ = 7 and t’ = t ,  to an open system bounded by radius R 
(see, for example, Keenan 1941, pp. 32ff.) gives 

/om soy 
f R  fR 

The last term in (7.8) expresses the change in energy of the fluid within R due to 
the energy content of the fluid crossing the boundary R and to the work done on 
the system in moving this fluid across R. Now if we let R -+ 00 and use the 
integrals defined in (7.5) and (7.7b), (7.8) reduces to 

W )  = G ( 7 )  +r[qW -q%7)1. (7.9) 

Thus, for a gas, in contrast to the situation for a liquid, the total-energy integral 
I; is not necessarily constant with time, but depends upon the variation with 
time of the mass integral I:. This is due to the possibility, for a gas, of the fluid 
‘at infinity’ exchanging energy with the interior fluid. In  order to apply (7.9) 
to the solution obtained in the next section, the initial values of 1% and Ip* must 
be determined. However, since (7.2) makes Ig(7) identically equal to zero, 
Ig(7) = I : ( y ) ,  and the problem is reduced to the determination of the initial 
density distribution p*(r, 7). 

The density distribution p*(r, 7) is given in terms of p*(r ,  7) and h*(r, 7) by 
the perfect gas law (3.4). If we identify the mean fluid properties, (-), used in 
the general analysis of 9 3 with the fluid properties at infinity, ( )m, in the case 
of the line impulse, p*(r, 7) can be found by integrating the radial momentum 
equation ( 3 . 8 ~ ~ )  for the velocity distribution (4.8); h*(r, 7) follows directly from 
(7.1) and (7.2). The combined result is 

(7.10) 
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which, when integrated, gives for the initial value of the mass integral the result 

(7.11) 

7.2. Solution for q/t  4 1 

As in the liquid case (cf. § 6 . l ) ,  the dominant terms in (5.6) for q/t  < 1 are those in 

the series ( $ + I -  1)ec. For a gas, however, C ~ ~ p ~ & , . - ~  =l= 0, and, keeping 

terms of O ( T - ~ ) ,  the approximate solution for El is 

- 1  10 

k = j  i= 1 

To the same order of magnitude, the approximate form of (7.4) is 

(7.12) 

(7.13) 

Comparing the magnitude of H - h, given by (7.12) and (7.13) with the magni- 
tude of v2 given by (4.8) shows that the corresponding approximate form of (7.1) is 

E - em z ( H  - h,)/y; (7.14) 

that is, for q/ t  < 1, the kinetic energy is much less than the induced increment of 
thermal energy. Substituting (7.12) and (7.13) into ( 5 . 3 ~ )  and applying (7.14) 

( 7 . 1 5 ~ )  

For y = 2,  the terms of O(Y-~)  cancel identically and, using (6.5) and (6.7), the 
non-dimensional energy distribution is 

(7.15 b )  

Equations (7.15) constitute the solution for the energy field of a line impulse 
of angular momentum in a gas. As such they must satisfy the energy relationships 
derived in $7.1. Applying the same considerations that led to (7.14), one can 
show, for q/t 4 1, that e - e ,  z E - em and that p* < h*, which reduces the gas 
law (3.4) to p* z -ye*. Consequently, the mass integral I:( t )  may be obtained 
by integrating ( 7 . 1 5 ~ ) ;  the result is 

(7.16) 
4747-2) !2 

q ( t )  = - yI;( t )  = ~ ~ V 2  ( 1 6 ~ ) ~ v ~ q ~ '  

Combining (7.9), (7.11), and (7.16) gives 

I:(t)--I:(q) = - ( l /y) l ; (q)  and I$( t ) -G(q)  = -I;(T),? (7.17) 
which shows that, 

for y = 2, I;(t) = I:(q) and I$(t) = I$(q); (7.18) i for y < 2,  > I;(q) and 1%) > I%/); 

for y > 2,  I;(t) < I;(TJ) and I%) < I%). 
t Since I$( t )  = 0 and I ; ( v )  = Iz(v), this equation also shows that the solution for the 

energy field for v / t<  1, (7.15), satisfies the first law of thermodynamics expressed in the 
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form (7.9). 
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That is, for y < 2, there is a net compression of the fluid set in motion by the 
line impulse, and the work accompanying this compression causes the total 
energy of the line impulse to increase with time. For y > 2, the opposite occurs; 
for y = 2, the energy of the line impulse remains constant, and this is the physical 
explanation for the cancellation of the higher-order terms in (7.12) and (7.13) 
for y = 2. 

Since the net effect of compression is zero for the y = 2 gas, it  is not surprising 
that the energy field of the line impulse in that case, (7.15b), has the same form 
as the energy field for the line impulse in a liquid, (6.8). However, although the 
net effect of compression is zero for the y = 2 gas, there is still a local increase in 
enthalpy due to compression (cf. equation (5.1)) for 8 < 3 and a corresponding 
decrease for 8 > 3. To show the effect of the local density changes more fully, the 
development of the energy field in a v = 1, y = 2 gas will be considered in the next 
section. 

7.3. Solution for v = 1, y = 2 

As was the case for the liquid (cf. $6.2), the evaluation of (5.6) is considerably 
simpler when the Prandtl number u = 1. The result is (Sibulkin 1960) 

. (7.19) 

The development of E* as y / t  varies from 1 to 0 is shown in figure 4. The result 
for y / t  = 0 from (7.19) is, of course, identical to (7.156) for v = 1. Comparing 
figures 3 and 4, it  can be seen that, during the early stages of development of the 
line impulse, say for r/t > 0.5, the energy distributions are not too different in 
that E* is negative at 8 = 0 for both the liquid and the gas. Later on, as q/t -+ 0 
however, the local effects of compressibility (as discussed in $7.2) cause E* to 
become positive at 8 = 0 and continue to cause E* to be negative at values of 
0 > 3. 

7.4. Discussion of results 

The results obtained in the preceding sections lead to the following qualitative 
description of the history of what we have defined as a line impulse of angular 
momentum, (4.6). 

At the time the line impulse originates, t = 7, the fluid is nearly at rest except 
in a region near the axis where, for r2/2vy < O( lo), the circumferential velocity v 
rises sharply to a maximum before returning to zero at  the axis. Corresponding to 
this velocity maximum, there is a temperature minimum (relative to the tem- 
perature of the fluid at infinity) such that the total energy-kinetic plus thermal 
-is constant throughout the fluid. And, as a consequence of the velocity field, 
there is a pressure minimum at the axis.? 

t It is suggested that the interested reader sketch the profiles at t = 11 for reference 
during the remainder of this discussion. 
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As the line impulse decays for t > 7, a ‘shear wave’ radiates from the axis in 
the sense that the radius of the velocity maximum increases with time while 
its magnitude decreases (figure 1). Simultaneously, a ‘thermal wave’ and a 
‘pressure wave ’ propagate radially. If we fix our attention on a fluid element 
initially at rest a t  a radius r‘ (which in the limit 7 + 0 includes all fluid elements), 
the passage of the shear wave sets the fluid elements into circular? motion about 
the axis of the line impulse with a velocity which rises to a maximum and then 

0.5 

04 

0.3 

-0.1 

- 0.2 I I I I I I I I 

0 2 4 6 8 10 12 14 16 

0 = ra/2vt 

FIGURE 4. Development of the energy field E* in a gas having a Prandtl number u = 1 
and a ratio of specific heats y = 2 as a function of the parameter T / t .  For a fixed time t ,  
the portion of the ordinate in brackets is constant ; the solution for the line impulse is the 
curve at the limit T / t  = 0. 

decays to zero as t --f 00. Thus the initial tendency of the shear wave is to increase 
the energy of the element by increasing its kinetic energy. On the other hand, 
the passage of the thermal wave tends to decrease the energy of the element. For 
Prandtl numbers CT greater than one, the kinematic viscosity is greater than the 
thermal diffusivity and the shear wave spreads more rapidly than the thermal 
wave causing the total energy of the element at r‘ to increase at first; for CT < 1, 
the reverse occurs. These effects can be traced on figure 2 by noting that, at a 
fixed radius r = r’ ,  19 decreases as t increases. 

t For a liquid the streamlines are circles; for a gas, subject to the limitation M @ 1 
assumed in this paper, the streamlines are perturbed circles in that r ( t )  + r’ as M -+ 0, 
as a consequence of (3.6). 

20-2 
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In  addition to the effects of shear and heat conduction described above, the 
passage of the pressure wave causes the pressure at r' to decrease at first and then 
tends to return the pressure to its initial value; and, for a gas, the work of com- 
pression accompanying this pressure variation first decreases and then increases 
the energy of the element. The over-all effect of compressibility depends upon the 
value of y for the gas (as discussed in $7.1) in such a way that the total energy 
of the fluid set in motion by the line impulse increases with time for y < 2 and 
decreases for y > 2 (7.15a). For y = 3,  the total energy of the gas remains con- 
stant, and the solution for the energy field in this case, (7.15b), has the same 
form as the solution for the liquid (6.8). These solutions show that for t/r 9 1,  
E* - e ,  z 0 throughout the fluid for CT = 4 in the case of a liquid and for = Q 
in the case of the gas. The differences between the liquid and they = 2 gas are due 
to the local effects of compressibility, and are further illustrated by the differences 
in the development of the line impulse with r/t as shown in figures 3 and 4 and 
discussed in $7.3. 

Appendix 
The values of and & j  are tabulated below. 

L, i . 7 
(ap)i .  4aOt3 exp ( i d )  j =  -3  - 2  -1 0 1 2 3 

i = 1 (-2+3a6,,) (a -2)2  i = l  1 - 2  1 0 0 0 0 
2 2[1-2(a-l)-&7sf,] (a-2)'  2 1 -3  + 3  -1 0 0 0 
3 - 4[1 - 2 ( a -  1) -+asf,] (a - 2) 3 0  1 - 2  1 0  0 0 
4 [l-2(a-l)-+a6fg] aZ(a-2) 8 4 0 1 -3  + 3  -1 0 0 

7 1 6 ( ~ - 1 )  7 0  0 1 - 2  1 0  0 

9 -8cr2(a-l) 8 9 0 0 1 -3  + 3  -1 0 

5 4(a-  1) (a- 2)' 5 1 -4  + 6  -4  + 1  0 0 
6 - 16(a- 1) (a-2) 6 0 1 - 3  + 3  -1 0 0 

8 4G2(5-1) (a -2)  8 0  1 - 4 + 6 - 4  1 0  

10 +&(a- 1) 82 10 0 0 1 -4 + 6  -4 1 
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